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When a gas bubble rises in a surfactant solution, the velocity field and the distribution
of surfactant affect each other. This paper gives the theory for small Reynolds and
internal Péclet numbers if the surfactant is gaseous or volatile, if its mass flux across
the bubble and around its surface dominates its mass flux through the bulk liquid,
and if slowness of both adsorption and convective diffusion must be allowed for.

The theory is tested on the experiments of Kelsall et al. (J. Chem. Soc. Faraday
Trans., vol. 92, 1996, p. 3879). Their bubbles rose as expected in a pure liquid until
the apparatus was opened to the atmosphere. That significantly slowed the bubbles
down. The effect is so sensitive to small concentrations of slowly adsorbing or reacting
surfactants that atmospheric carbon dioxide could have caused it, even though it alters
the equilibrium surface tension by less than four parts per million in pure air.

There are still unexplained discrepancies between experiment and theory. Additional
experiments are suggested that would help to explain them.

1. Introduction
The purpose of this paper is to explain the experiments of Kelsall et al. (1996a)

in which for the first time bubbles were observed rising at low Reynolds numbers
in a dilute aqueous solution (surface tension and viscosity close to those of pure
water) at the speed expected in a pure liquid, but after opening the apparatus to
the air the bubbles slowed down to rates closer to those expected for contaminated
surfaces. That effect was not constant, but varied both up and down over the next
30 hours. This paper explores the possibility of a surface-active soluble gas in the air
significantly affecting the bubble rise.

To understand how a gas bubble rises in a surfactant solution, one must solve the
coupled problems of fluid mechanics, adsorption kinetics, and convective diffusion.
If the surfactant is only in the liquid and on the bubble surface, and the external
Reynolds number is small, and either the external Péclet number is small or adsorption
kinetics rather than convective diffusion is rate-limiting for surfactant transfer, then
the surface speed uθ is known to vary as sin θ (Levich 1962, § 74–75), where we use
spherical polar coordinates (r, θ) centred on the bubble, with θ = 0 upwards. If the
surfactant occurs both inside and outside a bubble, then its transport around the
surface and in the liquid phase can be negligible in comparison to that across
the bubble interior, and we still have uθ ∝ sin θ . That appears to have been the case
in the experiments of Kelsall et al. (1996a), but it is not covered by previous work.

Kelsall et al. (1996a , b) also worked on electrophoresis of bubbles, but their results
raise issues beyond the scope of this work. In their experiments the Debye thickness
parameter κ−1 of the electric double layers was in every case very much smaller than
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the bubble radius a (aκ ≈ 500 for the smallest bubbles used), and the electrophoretic
mobility was of the form m0 + m1a, where m0 and m1 depended on the electric
field strength, and m0 and m1a were of comparable magnitudes. In their theory,
however, m0 = 0, and the other available theory for very thin double layers on
bubbles (Baygents & Saville 1991) gives m1 = 0.

In this paper, § 2 describes the adsorption kinetics and § 3 the fluid mechanics for a
slowly adsorbing single surfactant. For carbon dioxide, two chemical species, CO2(aq)
and HCO−

3 , would both have been important in the experiments of Kelsall et al.
(1996a), and the slow reaction is not adsorption but CO2(aq) � HCO−

3 . Section 4
gives the theory of that case, § 5 summarizes the experiments, § 6 their implications in
the light of the theory in § 4, and § 7 the conclusions.

2. Adsorption/desorption kinetics: one surfactant
As all aqueous solutions considered here are very dilute, we assume that they are

ideal, and that the surface excess Γ (mol m−2) of surfactant is far below its saturation
value Γsat . Then the surface pressure Π (N m−1), which is the reduction in surface
tension due to the surfactant, obeys Π = RT Γ . If axial symmetry is assumed, the
surfactant transfer around a spherical bubble of radius a obeys

∂Γ

∂t
+

1

a sin θ

∂

∂θ
(Γ uθ sin θ) =

Ds

a2 sin θ

∂

∂θ

(
sin θ

∂Γ

∂θ

)
+ j + jg, (2.1)

where Ds is the surface diffusivity of surfactant, and j , jg (mol m−2 s−1) are the fluxes
from the liquid and gas phases to the surface, given by

j = +D
∂c

∂r
= k (hc − Γ ) , (2.2)

jg = −Dg

∂cg

∂r
= kg(hgcg − Γ ), (2.3)

where the subscript g indicates the gas phase, D, Dg are the bulk-phase diffusivities,
k, kg are the desorption rate constants (s−1) of the surfactant, c, cg are the surfactant
concentrations (mol m−3), h and hg are the adsorption depths (m) defined by the
equilibrium values of limc→0(Γ/c) and limcg→0(Γ/cg), R is the gas constant, and T is
the absolute temperature. Ignoring slowness of adsorption is equivalent to replacing
(2.2) and (2.3) by j = D∂c/∂r , jg = −Dg∂cg/∂r , Γ = hc = hgcg , and k = kg = ∞.

We also use the chemists’ notation pH = − log10([H
+]/mol L−1), and [X] for the

concentration of X. In an aqueous solution [X] is c/1000, in a gas it is pg/pa , where pg

is the partial pressure; pa is 101.325 kPa in Bard, Parsons & Jordan (1985), 100 kPa
in Lide (2006).

Various authors use various notation for our adsorption parameters. Many use
Γ∞ for Γsat , but we use the subscript ∞ for equilibrium conditions in the liquid far
from the bubble or in the external air; our Γ∞ = hc∞ = hgcg∞. The present k, h and
the adsorption speed V of Harper (2004) are given in terms of ka , kd of Chang &
Franses (1995), or ka , β of Cuenot, Magnaudet & Spennato (1997), or kad , kdes , KH

of Dukhin, Miller & Loglio (1998), by

k = kd = βka = kdes, (2.4)

h = ka/kd = Γsat/β = kad/kdes = KH, (2.5)

V = kh = ka = kaΓsat = kad = kdesKH . (2.6)
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hg h Abundance Π∞
Units nm nm % by volume µNm−1

Gas
O2 0.769 25 20.9 16
N2 0.824 51 78.1 65
Ar 0.829 36 0.934 0.78
CO2 7.69 8.53 0.0376 0.29

Table 1. Data for gases in air at water surfaces at 25 ◦C. For CO2 the table gives hg = Π/RT cg ,

h = Π/RT cCO2
, where all four of adsorbed CO2, H2CO3, HCO−

3 and CO2−
3 contribute to Π ,

but only CO2(g) to cg , and only dissolved CO2(aq) to cCO2
.

Table 1 gives data for some common gases in air, from Bard et al. (1985), Lide
(2006), and Turkevich & Mann (1990) whose τ is our −hg . Values of k and kg appear
not to be known for any of the gases, but are probably very large except for CO2;
see below.

3. Low internal Péclet number: one surfactant
3.1. Mass transfer

Levich (1962) dealt with slow adsorption in § 74, and with surfactant transport
outside and on the surface but not inside in § 75, and Harper (1972) considered a
surfactant both inside and outside, but ignored slowness of adsorption. If the Péclet
numbers Peg = 2Ua/Dg � 1 and Pe = 2Ua/D � 1, he showed that external surfactant
transport is much less than internal if Dg/hg � D/h. For bubbles with Peg � 1 but

Pe � 1, external transport is still negligible if Dg/hg � Pe1/2D/h. That still holds
for a bubble in water if hg < 100h because Dg is of order 104D, so Peg � 1 implies

that Pe1/2 � 100. Because Ds is of the same order as D, we may also ignore surface
diffusion for bubbles with a >h.

We may then ignore j and the term in Ds in (2.1), and in a steady state we may also
put ∂Γ/∂t = 0. If Peg � 1 and Re = 2Uaρ/η � 1, where ρ, η are the liquid density
and dynamic viscosity, Levich (1962, § 74–75) showed that cg and Γ both remain close
to their mean values, and the difference is proportional to cos θ , while the surface
velocity uθ is proportional to sin θ . Hence there are constants Π0, Π1, c1, u1 such that

Π = Π0 + Π1 cos θ = RT Γ, (3.1)

cg = c0 + c1(r/a) cos θ, (3.2)

uθ = u1 sin θ. (3.3)

Terms independent of θ in (2.1) give Π0 = RT hgc0, so Π0 = Π∞ if the mean surfactant
concentration inside the bubble is the same as in the ambient air. It is not obvious
whether it is; the point is taken up later. Terms in cos θ give

2u1Π0 = −DgRT c1. (3.4)

Terms involving higher powers of cos θ are negligible.
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3.2. Fluid mechanics

At a Reynolds number Re � 1 we may write the stream function ψ of the flow
relative to the bubble as

ψ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ua2

2

[(
r2

a2
− a

r

)
− α

( r

a
− a

r

)]
sin2 θ if r � a,

Ua2αg

2

(
r4

a4
− r2

a2

)
sin2 θ if r � a,

(3.5)

for some dimensionless constants α, αg . If the tangential velocity uθ and the shear
stress τ are given on the surface r = a in the liquid phase by us , τs , and in the gas
phase by ugs , τgs , and ηg is the internal dynamic viscosity, then

ugs = αgU sin θ, (3.6a)

us =
(

3
2

− α
)
U sin θ = ugs, (3.6b)

τgs = 3ηgαg(U/a) sin θ, (3.6c)

τs = 3η(α − 1)(U/a) sin θ = τgs + (1/a)(∂Π/∂θ). (3.6d)

The Stokeslet contribution to ψ , i.e. the term in r sin2 θ for r � a in (3.5), comes from
the resultant force on the bubble. Hence, if ρg is the internal density,

α =
(ρ − ρg)ga2

3Uη
. (3.7)

3.3. Consequences

If the mass-transfer slowness S (s m−1) and effective interior viscosity ηS (Pa s) are
defined by

S =
2

3

{
hg

Dg

+
1

akg

}
, (3.8)

ηS = ηg + SΠ0, (3.9)

then equations (2.1), (2.3), (3.6) and (3.7) lead to

u1 =
Uη

2(η + ηS)
, (3.10)

Π1 = −3u1SΠ0, (3.11)

U =
2(ρ − ρg)ga2(η + ηS)

3η(2η + 3ηS)
. (3.12)

Equations (3.8), (3.9) and (3.12) show that at low internal Péclet number, U may be
quite sensitive to the adsorption speed, unlike the stagnant-cap case (Harper 2004). In
a pure liquid, ηS = ηg , and U is the classical Rybczyński–Hadamard result, but when a
surfactant is present, (3.12) extends various known special cases (Dukhin et al. 1998)
to allow for slow adsorption/desorption and interior convective diffusion.

For the atmospheric gases Ar, N2 and O2, the values of Π∞ and hg are so small
and of kg are so large that ηS ≈ ηg , i.e. these gases are ineffective as surfactants. The
same is true of CO2 if the surface pressure is mainly due to the gas CO2(g) and its
unreacted solution CO2(aq), but not if the surface pressure of HCO−

3 is important,
because of the slowness of reactions between it and CO2(aq). This matter is taken up
in the next section.
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4. Carbon dioxide: two surfactants, only one in the gas phase
Carbon dioxide exists in aqueous solution in four forms, CO2(aq), HCO−

3 , H2CO3

and CO2−
3 , but the weakly acidic solutions of Kelsall et al. (1996a) would have

contained such small concentrations of the latter two that we may ignore them, even
though H2CO3 is an intermediate product in the reversible reactions between CO2(aq)
and HCO−

3 . Pocker & Bjorkquist (1977) studied these reactions; the two main ones
and their rate constants at 25 ◦C are

CO2(aq) + H2O
k+1

�
k−1

HCO−
3 + H+, (4.1)

CO2(aq) + OH− k+2

�
k−2

HCO−
3 ; (4.2)

k+1 = 1.8 × 10−2 s−1, (4.3)

k−1 = kH+[H+], (4.4)

kH+ = 4.1 × 104 L mol−1 s−1, (4.5)

k+2 = kOH−[OH−], (4.6)

kOH− = 6.0 × 103 L mol−1 s−1, (4.7)

k−2 = 1.4 × 10−4 s−1, (4.8)

where kH+, kOH− are from Pocker & Bjorkquist (1977), and k+1, k−2 were calculated
from the equilibrium constants K1, K2 of reactions (4.1), (4.2), which were themselves
deduced (personal communication, G. H. Kelsall) from Bard et al. (1985):

K1 =
k+1

kH+

=
[HCO−

3 ][H+]

[CO2(aq)]
= 4.33 × 10−7 mol L−1, (4.9)

K2 =
kOH−

k−2

=
[HCO−

3 ]

[OH−][CO2(aq)]
= 4.29 × 107 L mol−1, (4.10)

K1/K2 = [H+][OH−] = 1.01 × 10−14 mol2 L−2. (4.11)

From (4.1)–(4.8), the overall rate constants k+ for CO2(aq) → HCO−
3 and k− for

HCO−
3 → CO2(aq) are k+ = k+1 + k+2 and k− = k−1 + k−2.

We now modify the analysis of § 3 to include the effects of finite k− and k+ and
account for adsorbed CO2 and HCO−

3 but with only CO2(g) inside the bubble. Let
the surface concentrations of CO2 and HCO−

3 be ΓCO2
and ΓHCO−

3
. As CO2 is the

only volatile species, and its partial pressure pg is very small, we use cg =pg/RT

for its concentration in the gas phase, and cCO2
in the liquid phase. We assume

equilibrium at the surface between dissolved and adsorbed CO2 and HCO−
3 separately,

i.e. ΓCO2
= hCO2

cCO2
, ΓHCO−

3
= hHCO−

3
cHCO−

3
, and a reversible reaction between adsorbed

CO2 and HCO−
3 with rate constants ks+, ks− not necessarily equal to the bulk-solution

values k+, k−. We also assume for simplicity that variations with time may be ignored,
and that the reaction CO2(g) � CO2(aq) is instantaneous. (In § 3 the slow reaction
was assumed to be at the bubble surface; now slow reactions are considered both
there and in the bulk liquid.) As cCO2

and cg are both measured in mol m−3, the
equilibrium constant deduced from the Gibbs energies of formation of CO2(g) and
CO2(aq) (Bard et al. 1985) is the dimensionless partition coefficient

K = cCO2
/cg = 0.90. (4.12)
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In the absence of added acid or alkali, electroneutrality implies

[H+] = [OH−] + [HCO−
3 ], (4.13)

so that pH < 7, and in equilibrium, (4.9), (4.10) and (4.13) lead to

pg =
1000RT

K

(
[H+]2

K1

− 1

K2

)
. (4.14)

The dimensionless total solubility s is

s = {cCO2
+ cHCO−

3
}/cg = K(k− + k+)/k− >K. (4.15)

Lide (2006) implies s = 0.83 <K , but the true value will turn out to be unimportant
for our purposes, especially as k+ < 0.2k− in the experiments. In equilibrium,

ks+ΓCO2
= ks−ΓHCO−

3
, (4.16)

k+cCO2
= k−cHCO−

3
, (4.17)

� hCO2
ks+/k+ = hHCO−

3
ks−/k−; (4.18)

ΓCO2
+ ΓHCO−

3
= Γ = hgcg = hCO2

cCO2
+ hHCO−

3
cHCO−

3
(4.19)

= (hCO2
+ hHCO−

3
k+/k−)cCO2

, (4.20)

hg =
s(hCO2

k− + hHCO−
3
k+)

k− + k+

. (4.21)

Note that (4.18) implies that if ks+ = k+ and ks− = k− then hCO2
= hHCO−

3
; the values

of ks+, ks−, hCO2
and hHCO−

3
are, however, generally unknown. The surface transport

equations become

1

a sin θ

∂

∂θ

{
ΓCO2

uθ sin θ
}

= +ks−ΓHCO−
3

− ks+ΓCO2
− Dg

∂cg

∂r
, (4.22)

1

a sin θ

∂

∂θ

{
ΓHCO−

3
uθ sin θ

}
= −ks−ΓHCO−

3
+ ks+ΓCO2

, (4.23)

�
1

a sin θ

∂

∂θ
{Πuθ sin θ} = −DgRT

∂cg

∂r
. (4.24)

The analogue of (3.1) is the set of equations

2ΠCO2
= RT ΓCO2

= ΠCO2,0
+ ΠCO2,1

cos θ, (4.25)

ΠHCO−
3

= RT ΓHCO−
3

= ΠHCO−
3 ,0 + ΠHCO−

3 ,1 cos θ, (4.26)

Π = RT Γ = Π0 + Π1 cos θ = ΠCO2
+ ΠHCO−

3
. (4.27)

Equations (3.2) and (3.3) remain unchanged. Terms independent of θ now give

ks+ΠCO2,0
= ks−ΠHCO−

3 ,0, (4.28)

while terms in cos θ give the mass-transfer slowness S as

S =
2

3

{
hg(ks− + ks+)

Dgks−
+

ks+

k+

(
k−

ks−

)2
k′

a

}
, (4.29)

where

k′ =
k+

k−(k− + k+)
. (4.30)

Equations (3.9)–(3.12) remain unchanged if one uses the value of S given by (4.29),
which is the two-surfactant analogue of (3.8).
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Figure 1. Rate constants, SΠ∞ and pg for acidic CO2 solutions if ks+ = k+, ks− = k−, a =

40 µm, in terms of pH. +, k+/s−1; −, k−/s−1; solid curve, SΠ∞/(mPas); dashed curve,
pg/Pa ≈ 105pg/pa; dotted curve, k′/s.

The term involving hg in (4.29) is negligible if the bubbles are small enough for our
low-Re theory to apply and if ks−, ks+ are of magnitudes similar to k−, k+, so S then
depends only on a and the rate constants. Figure 1 plots these variables against pH:
SΠ∞ (for a = 40 µm), pg , k+, k−, and k′, which is close to 3

2
Sa if ks+ = k+, ks− = k−.

5. Experiments
If bubbles in water are small enough for low-Re theory to apply, they will rise as

if they were rigid spheres unless the value of Π∞ is extraordinarily low, so the system
purity must be very high. Kelsall et al. (1996a , b) achieved that with oxygen bubbles
(T = 298 K, ηg = 20.6 µPa s), rising between plane electrodes 7 to 9 mm apart that
were perforated to let the bubbles pass through, in a cell about 30 mm in diameter
filled with a 10−4 mol L−1 solution of NaClO4 (η = 895 µPa s).

To purify the system they purged it for 3 hours with a swarm of microbubbles (Scott
1975). When the cell was sealed from the laboratory atmosphere, all bubbles with
diameters from 30 to 110 µm were reported to rise at the speed Up expected in a pure
liquid if Re � 1, e.g. for d = 80 µm, U = Up =5.16 mm s−1, so that Re = 0.46. Nobody
else seems to have reported experiments with bubbles that rose at low Reynolds
numbers in water or dilute aqueous solutions as if the liquid was pure.

For the present purpose, the particularly interesting part of Kelsall et al.’s work is
what happened when they opened their cell to the atmosphere after purging. Over the
next 19 hours, U for bubbles with a = 40 µm reduced, rapidly at first then gradually,
from 5.16 mm s−1 to 4.02 mm s−1. Then U increased over the following 7 hours
to 4.19 mm s−1. That suggests that the concentration of airborne surfactant varied
during the day, but does not show what it was.
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6. Implications
One cannot just assume Stokes flow with ηg = 0 and ρg =0 when applying the

foregoing theory: that would give Up = 5.83 mm s−1. The actual values of ηg , ρg

and Re would give 5.30 mm s−1 in an infinite liquid, which removes much of the
discrepancy with the experimental 5.16 mm s−1. The remaining 3% is understandable
because the precision attained in the measurement of U was ±1% and the bubble dia-
meter was about 2% of the distance to the nearest solid boundary. We therefore use
Up = 5.16 mm s−1.

When U reduced to 4.02 mm s−1, (3.12) implies that ηS =1.475η = 1.32 mPa s.
In Kelsall’s laboratory, CO2 was 0.0376% of the air (personal communication,
G. H. Kelsall). From table 1, Π∞ = 0.29 µNm−1, and (4.14) gives pH=5.61 when the
apparatus was opened. The theory leading to (4.29) then gives S = 2.48 × 104 s m−1 if
ks+ = k+ and ks− = k−, but (3.9) and the experimental values of ηS and ηg imply that
S = 4.55 × 103 s m−1 if Π∞ = Π0: 18% of the theoretical result. When U rose again to
4.19 mm s−1, the experimental ηS decreased to 0.86 mPa s and S to 2.97 × 103 s m−1:
12% of the theoretical result.

Because SΠ∞ varies little with pH and hence cg if pH< 5.7 (8.57 mPa s at pH 4 to
7.04 mPa s at pH 5.7) the explanation cannot be simply a poor estimate of the CO2

abundance. One might imagine that cg inside the bubbles was only about 18% of its
value in the ambient air, so Π0 = 0.18Π∞ because the bubbles were still absorbing
CO2 from solution. If so, bubbles would be gradually slowing down as they rose.
Kelsall et al. (1996a) would have detected that because they measured the speed of
each bubble twice, at different heights. Also, that does not explain why after several
more hours cg had reduced even more, to 12% of its value in the ambient air, instead
of rising to a value nearer 100%.

A more likely possibility is another gas as well as CO2 dissolving in water to form
an acid, HX say. Even if HX is not surface-active and ionises instantaneously, (4.13)
would still need to change, to [H+] = [OH−] + [HCO−

3 ] + [X−], and (4.14) would
become

pg =
1000RT

K

(
[H+]2

K1

− 1

K2

− [H+][X−]

K1

)
. (6.1)

That would increase [H+] and reduce pH at any given value of the partial pressure
pg of CO2, which would reduce k′ and hence reduce the effect of CO2 on the speed
of bubble rise. The observed time dependence of the speed U would then suggest a
diffusivity of HX or X− lower than that of CO2(aq) or HCO−

3 .
Surface-active dust settling on the water seems an unlikely cause of the variations

in bubble speed, as its effect would be monotonic in time. Temperature variation is
also an unlikely cause: Kelsall et al. (1996a) kept the temperature constant in their
apparatus, and heat is a very ineffective surfactant (Harper et al. 1967).

If the rate constants ks+, ks− for adsorbed CO2 � HCO−
3 had values different from

their bulk-solution values, S in (4.29) would be multiplied by (ks+/k+)(k−/ks−)2. That
might explain one of the experimental S values, but not both.

There must have been a vertical gradient of surfactant concentration in the liquid
when the apparatus was first opened, making the surface tension then lowest at
the top. That would speed the bubbles up (Young, Goldstein & Block 1959), but
after some hours the concentration would become uniform and the vertical gradient
would disappear. This was probably the case when U reached 4.02 mm s−1, and if a
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re-established vertical gradient was the reason for the subsequent rise to 4.19 mm s−1,
it must have been because the air was then less polluted than it was initially.

7. Conclusions
Although atmospheric carbon dioxide causes very small changes in surface tension,

this is more than enough to affect the behaviour of bubbles because of the slowness
of the reaction between CO2 and HCO−

3 . Our theory suggests that the effect of CO2

should have been larger than was observed. A possible cause is an acid air pollutant
in addition to the carbon dioxide. Kelsall et al. (1996a , b) did two experiments in
sealed apparatus, which if repeated in apparatus opened to the air (or with known
CO2 concentrations) would help elucidate the problems: measuring pH in the liquid,
and using bubbles of various diameters less than 80 µm, which is near the upper limit
for Stokes flow to be a good approximation.

I am grateful to Professor Kelsall for alerting me to Bard et al. (1985) and providing
some experimental details that were not mentioned by Kelsall et al. (1996a , b), to a
referee for many improvements in this paper, and to the Marsden Fund administered
by the Royal Society of New Zealand for supporting the early stages of this work.
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